
Analyzing Running Time
(Chapter 2)

What is efficiency?

Tools: asymptotic growth of functions

Practice finding asymptotic running time of 
algorithms



Is My Algorithm Efficient?
Idea:  Implement it, time how long it takes.

Problems?

Effects of the programming language?
Effects of the processor?
Effects of the amount of memory?
Effects of other things running on the 
computer?
Effects of the input values?
Effects of the input size?



Worst-Case 
Running Time

Worst-case running time: bound the largest 
possible running time on any input of size N

Seems pessimistic, but:

Effective in practice

Hard to find good alternative (e.g., average 
case analysis)



Brute Force

Good starting point for thinking about 
efficiency: can we do better than a “brute 
force” solution?

What is the brute force solution for the 
stable matching problem?



Worst-case:
Gale-Shapley vs. Brute Force
# Colleges

N
G-S
N2

Brute 
Force
N!

4 8 16

16 64 256

24 40,320 20,922,789,888,000



Working Definition of 
Efficient

Efficient = better than brute force

Desired property: if input size increases by 
constant factor algorithm slows down by a 
constant factor

E.g. size N -> 2N, time T -> 4T



Polynomial Time

Definition: an algorithm runs in polynomial time if 

Number of steps is at most c * Nd, where N is 
input size, and c and d are constants

Does this satisfy desired property?

If there is no polynomial time solution, we say 
there is no efficient solution.



Running Times as 
Functions of Input Size



Asymptotic Growth:
Big O(), Ω(), Θ()

Goal: build tools to help coarsely classify 
algorithm’s running times

Running time = number of primitive 
“steps” (e.g., line of code or assembly 
instruction)
Coarse:                       is too detailed1.62n2 + 3.5n + 8



Notation

Let T(n) be a function that defines the 
worst-case running time of an algorithm.

For the remainder of the lecture, we assume 
that all functions T(n), f(n), g(n), etc. are 
nonnegative



Big O Notation

T(n) is O(f(n)) if
T(n) ≤ c · f(n), where c ≥ 0 for all n ≥ n0

(Example on board)

O(n) is the asymptotic upper bound of T(n).



3n + 2
4n

n0 = 2

Visualizing 
Asymptotics

T(n) = 3n + 2 is O(n)



Ω Notation

T(n) is Ω(f(n)) if
T(n) ≥ c · f(n), where c ≥ 0 for all n ≥ n0

(Example on board)

Ω(n) is the asymptotic lower bound of T(n).



3n + 2 n

n0 = 0

Visualizing Asymptotics

T(n) = 3n + 2 is Ω(n)



Θ Notation

T(n) is Θ(f(n)) if
T(n) is O(n) and T(n) is Ω(n)

(Example on board)

Θ(n) is the asymptotic tight bound of T(n).



3n + 2 n

Visualizing 
Asymptotics

T(n) = 3n + 2 is Θ(n)

4n



O(), Ω(), Θ() 

O() - upper bound
T(n) ≤ c · f(n), where c ≥ 0 for all n ≥ n0

Ω() - lower bound
T(n) ≥ c · f(n), where c ≥ 0 for all n ≥ n0

Θ() - tight bound
Both O() and Ω()



Properties of 
O(), Ω(), Θ() 



Transitivity

Claim:

(a) If f = O(g) and g = O(h), then f = O(h)

(b) If f = Ω(g) and g = Ω(h), then f = Ω(h)

(b) If f = Θ(g) and g = Θ(h), then f = Θ(h)

Prove (a) on board



Additivity

Claim:  

(a) If f = O(h) and g = O(h), then f+g = O(h)

(b) If f1, f2, ..., fk are each O(h), then f1 + f2 + ...+ 
fk is O(h)

(c) If f = O(g), then f+g = Θ(g)

Prove (a) on board; discuss (c)



Asymptotic Bounds For 
Common Functions



Polynomial Time
Claim:  Let T(n) = c0 + c1n + c2n2 + ... + cdnd, where 
cd is positive. Then T(n) is Θ(nd).

Proof: repeated application of the additivity rule (c)

New definition of polynomial-time algorithm: running 
time T(n) is O(nd)



Logarithm Review
Defn:           is the unique number c s.t.logb (a) bc = a

“log base b of a”: Informally, the number of times 
you can divide a into b parts before each has size one

Facts: logb (b
n ) = n

blogb (n) = n

loga (n) =
logb (n)
logb (a)

loga (n) =Θ(logb (n))



Other Asymptotic 
Orderings

Logarithms:
logan is O(nd), for all bases a and all degrees d
➔ All logarithms grow slower than all 
   polynomials
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Other Asymptotic 
Orderings

Exponential functions:
nd is O(rn) when r > 1
➔ Polynomials grow no more quickly than
    exponential functions.

y = x2

y = 2x

0

375

750

1125

1500

1 2 3 4 5 6 7 8 9 10



A Harder Example

Which of these grows faster?
n4/3

n(log n)3



Recap

What you should know

Polynomial time = efficient

Definitions of O(), Ω(), Θ()

Transitivity and additivity. Basic proof 
techniques

How to “sort” functions: log(n), polynomials, 
n*log(n), exponentials


