Analyzing Running Time
(Chapter 2)

@ What is efficiency?
@ Tools: asymptotic growth of functions

@ Practice finding asymptotic running time of
algorithms



Is My Algorithm Efficient?

® Idea: Implement it, time how long it fakes.

@ Problems?

@ Effects of the programming language?
@ Effects of the processor?
@ Effects of the amount of memory?
@ Effects of other things running on the
computer?
@ Effects of the input values?
== o Effects of the input size?



Worst-Case
Running Time

@ Worst-case running time: bound the largest
possible running time on any input of size N

@ Seems pessimistic, but:
@ Effective in practice

@ Hard to find good alternative (e.g., average
case analysis)



Brute Force

@ Good starting point for thinking about
efficiency: can we do better than a “brute
force” solution?

® What is the brute force solution for the
stable matching problem?



Worst-case:
Gale-Shapley vs. Brute Force

-

# Colleges
N

4 8 16

64 256

40,320 | 20,922,789,888,000




Working Definition of
Efficient

® Efficient = better than brute force

@ Desired property: if input size increases by
constant factor algorithm slows down by a
constant factor

@ E.g. size N -> 2N, time T -> 4T



Polynomial Time

@ Definition: an algorithm runs in polynomial time if

@ Number of steps is at most ¢ * N9, where N is
input size, and ¢ and d are constants

@ Does this satisfy desired property?

If there is no polynomial time solution, we say
there is no efficient solution.



Running Times as
Functions of Input Size

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10>° years, we simply record the algorithm as
taking a very long time.

nlog, n n? n3 1.5% L n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 <1lsec <1 sec < 1 sec < 1 sec 18 min  10%° years
n=>50 < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n =100 <lsec < 1sec l1sec 12,892 years 107 years  very long

n = 1,000 < 1 sec 1 sec 18 min very long  very long very long
n = 10,000 < 1 sec 2 min 12 days very long very long very long
n = 100,000 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 20 sec 12 days 31,710 years very long very long very long




Asymptotic Growth:
Big O(), Q(), ©()

@ Goal: build tools to help coarsely classify
algorithms running times

@ Running time = number of primitive
"steps” (e.g., line of code or assembly
instruction)

@ Coarse: 1 .62n° +3.5n+8 is too detailed



Notation

@ Let T(n) be a function that defines the
worst-case running time of an algorithm.

@ For the remainder of the lecture, we assume
that all functions T(n), f(n), g(n), etc. are
nonnegative



Big O Notation

@ T(n) is O(f(n)) if
T(n) < ¢ - f(n), where c > O for all n 2 ng

@ (Example on board)

@ O(n) is the asymptotic upper bound of T(n).



Visualizing
Asymptotics

T(n) = 3n + 2 is O(n)



() Notation

@ T(n) is Q(f(n)) if
T(n) > ¢ - f(n), where c > O for all n > ng

@ (Example on board)

@ Q(n) is the asymptotic lower bound of T(n).



Visualizing Asymptotics

no=0—

T(n) = 3n + 2 is Q(n)



© Notation

@ T(n) is O(f(n)) if
T(n) is O(n) and T(n) is Q(n)

@ (Example on board)

@ O(n) is the asymptotic tight bound of T(n).



Visualizing
Asymptotics

T(n) = 3n + 2 is ©(n)



O(). 2(), ()

@ O() - upper bound
T(n) < ¢ - f(n), where c > 0 for all n > ng

@ Q() - lower bound
T(n) > ¢ - f(n), where c > 0 for all n 2 ng

@ O() - tight bound
Both O() and Q()



Properties of
0(), 2(), ()



Transitivity

Claim:

(a) If f = O(g) and g = O(h), then f = O(h)
(b) If f = Q(g) and g = Q(h), then f = Q(h)
(b) If f = O(g) and g = O(h), then f = O(h)

Prove (a) on board



Additivity

Claim:
(a) If f = O(h) and g = O(h), then f+g = O(h)

(b) If fi, f2, ..., fk are each O(h), then fi + f2> + ..+
fc is O(h)

(c) If f = O(g), then f+g = O(g)

Prove (a) on board; discuss (c)



Asymptotic Bounds For
Common Functions



Polynomial Time

Claim: Let T(n) = co + cin + c2n? + ... + can9, where
cq is positive. Then T(n) is ©O(nd).

Proof: repeated application of the additivity rule (c)

New definition of polynomial-fime algorithm: running
time T(n) is O(nq)



Logarithm Review

Defn: log,(a) is the unique number c s.t. b =a

"log base b of a”: Informally, the number of times
you can divide a info b parts before each has size one

Facts: lOgb(bn) —n

blogb(n) —n

log, (n)
log, (a)

log (n)= log (n)=0O(log,(n))



Other Asymptotic
Orderings

@ Logarithms:
logan is O(nd), for all bases a and all degrees d
-> All logarithms grow slower than all
polynomials

75
50

25

0
e o 240 23] SRZL IS s 7 TR G Al 5 (0]




Other Asymptotic
Orderings

@ Exponential functions:
nd is O(r") when r > 1
=> Polynomials grow no more quickly than
exponential functions.

0
RO SN R E I 61 A7 S LY Ol 0




A Harder Example

@ Which of these grows faster?
n4/3

n(log n)°



Recap

What you should know
@ Polynomial time = efficient

@ Definitions of O(), Q(), ©()

@ Transitivity and additivity. Basic proof
techniques

@ How to "sort” functions: log(n), polynomials,
n*log(n), exponentials



